home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Your Choice 3
/
Your Choice Software Collection 3.iso
/
doom
/
progs
/
pwaddr10
/
pwadder.ex
< prev
next >
Wrap
Text File
|
1994-09-26
|
59KB
|
3,216 lines
ÆîB=1,
C=2,
D=4,
E=8,
F=16,
G=32,
H=64
îI=14,
J=15,
K=24
ÆæL()
ç╧(I,0)
éæ
ÆäM(¡N)
╨(J,N)
éä
ÆäN(¡O)
╨(K,O)
éä
îO=1,
P=2,
Q=3,
R=4,
S=5,
T=6,
U=7,
V=8,
W=9,
X=10,
Y=11,
Z=12,
a=13,
b=18,
c=21
ïd(¡e)
ç(e>=-3Äe<=19)Å(e>=256Äe<=261)
éï
ïe(¡f)
çf>=0Äf<=255
éï
ïf(¡g)
çg=0Åg=1
éï
ïg(¡h)
çh>=1
éï
ïh(«i)
ç½(i)=2
éï
ïi(«j)
ç½(j)>=2
éï
Æäj(e k,i l)
╨(P,{k,0,l})
éä
Æäk(e l,
f m,
i n)
╨(Y,{l,m,n})
éä
Æäl(e m,f n,h o,h p)
╨(b,{m,n,o,p})
éä
Æäm(e n,h o)
╨(R,{n,o})
éä
Ææp(h n)
ç╧(c,n)
éæ
Ææo(d n)
ç╧(S,n)
éæ
Æîn=1,
q=2,
r=3,
s=4,
t=5,
u=6,
v=7
Ææw()
ç╧(a,0)
éæ
Æîx=8192,
y=1543,
z=7,
BA=1031
ÆäBB(¡BC)
╨(T,BC)
éä
ÆæBC(g BD)
ç╧(Z,BD)
éæ
ÆäBD(f BE)
╨(U,BE)
éä
ÆäBE(¡BF)
╨(V,BF)
éä
ÆäBF(e BG)
╨(W,BG)
éä
ÆäBG(e BH)
╨(X,BH)
éä
ïBH(«BI)
ç½(BI)=3
éï
ÆæBI(e BJ,BH BK)
ç╧(Q,{BJ,BK})
éæ
ïBJ(¡BK)
çBK>=0
éï
ÆäBK(BJ BL)
╨(O,BL)
éä
îBL=19,
BM=20,
BN=22,
BO=23
ïBP(¡BQ)
çBQ>=0
éï
ïBQ(¡BR)
çBR>=-1
éï
ÆæBR(BP BS,BQ BT)
ç╧(BL,{BS,BT})
éæ
ÆæBS(BP BT)
ç╧(BM,BT)
éæ
Æî
BT=1,
BU=2,
BV=3,
BW=4,
BX=5,
BY=6,
BZ=7,
Ba=8,
Bb=9
ÆæBc(«Bd)
ç╧(BN,Bd)
éæ
ÆæBd()
ç╧(BO,0)
éæ
ÆæBe(«Bf)
¡Bg,Bh,Bi,Bj
░Bk,Bl
Bj=½(Bf)
Bg=╢(Bj/3)+1
è1ê
Bi=Bg+1
åBm=BiìBjê
Bk=Bf[Bm]
Bh=Bm-Bg
è1ê
Bl=Bf[Bh]
ü╜(Bk,Bl)>=0â
Bh=Bh+Bg
É
éü
Bf[Bh+Bg]=Bl
üBh<=Bgâ
É
éü
Bh=Bh-Bg
éè
Bf[Bh]=Bk
éå
üBg=1â
çBf
à
Bg=╢(Bg/3)+1
éü
éè
éæ
ÆîBf=0,
Bg=-1,
Bh=1
îBi=-2
îBj=1
ïBk(¡Bl)
çBl>=0
éï
ïBm(¡Bl)
çBl>=BiÄBl<=255
éï
Bk Bl
Bm Bn
Bn=Bi
æBo()
Bm Bp
üBn=Biâ
ç╖(Bl)
à
Bp=Bn
Bn=Bi
çBp
éü
éæ
äBp(Bm Bq)
Bn=Bq
éä
äBq()
Bm Br
èBjê
Br=Bo()
üö╛(Br,{
32,9,10})â
É
éü
éè
Bp(Br)
éä
îBr={
110,116,39,34,92,114},
Bs={
10,9,39,34,92,13}
æBt(Bm Bu)
Bk Bv
Bv=╛(Bu,Br)
üBv=0â
çBh
à
çBs[Bv]
éü
éæ
æBu()
Bm Bv
Bv=Bo()
üBv=92â
Bv=Bt(Bo())
üBv=Bhâ
ç{Bh,0}
éü
éü
üBo()!=39â
ç{Bh,0}
à
ç{Bf,Bv}
éü
éæ
æBv()
«Bw
Bm Bx
Bw={}
èBjê
Bx=Bo()
üBx=BgÅBx=10â
ç{Bh,0}
éü
üBx=34â
É
ëBx=92â
Bx=Bt(Bo())
üBx=Bhâ
ç{Bh,0}
éü
éü
Bw=Bw&Bx
éè
ç{Bf,Bw}
éæ
ïBw(¡Bx)
çBx=-1ÅBx=+1
éï
æBx()
Bm By
Bw Bz,CA
Bk CB
¡CC
╝CD,CE,CF,CG
Bz=+1
CD=0
CA=+1
CF=0
CB=0
By=Bo()
üBy=45â
Bz=-1
ëBy !=43â
Bp(By)
éü
By=Bo()
üBy=35â
èBjê
By=Bo()
CC=╛(By,{
48,49,50,51,52,53,54,55,56,57,65,66,67,68,69,70})-1
üCC>=0â
CB=CB+1
CD=CD*16+CC
à
Bp(By)
üCB>0â
ç{Bf,Bz*CD}
à
ç{Bh,0}
éü
éü
éè
éü
è╛(By,{
48,49,50,51,52,53,54,55,56,57})ê
CB=CB+1
CD=CD*10+(By-48)
By=Bo()
éè
üBy=46â
By=Bo()
CE=10
è╛(By,{
48,49,50,51,52,53,54,55,56,57})ê
CB=CB+1
CD=CD+(By-48)/CE
CE=CE*10
By=Bo()
éè
éü
üCB=0â
ç{Bh,0}
éü
üBy=101ÅBy=69â
By=Bo()
üBy=45â
CA=-1
ëBy !=43â
Bp(By)
éü
By=Bo()
ü╛(By,{
48,49,50,51,52,53,54,55,56,57})â
CF=By-48
By=Bo()
è╛(By,{
48,49,50,51,52,53,54,55,56,57})ê
CF=CF*10+By-48
By=Bo()
éè
Bp(By)
à
ç{Bh,0}
éü
à
Bp(By)
éü
CG=1
üCA>=0â
åCH=1ìCFê
CG=CG*10
éå
à
åCH=1ìCFê
CG=CG*0.1
éå
éü
ç{Bf,Bz*CD*CG}
éæ
æBy()
Bm Bz
«CA,CB
Bq()
Bz=Bo()
ü╛(Bz,{
45,43,46,48,49,50,51,52,53,54,55,56,57,35})â
Bp(Bz)
çBx()
ëBz=123â
CA={}
èBjê
Bq()
Bz=Bo()
üBz=125â
ç{Bf,CA}
à
Bp(Bz)
éü
CB=By()
üCB[1]!=Bfâ
çCB
éü
CA=▒(CA,CB[2])
Bq()
Bz=Bo()
üBz=125â
ç{Bf,CA}
ëBz !=44â
ç{Bh,0}
éü
éè
ëBz=34â
çBv()
ëBz=39â
çBu()
ëBz=-1â
ç{Bg,0}
à
ç{Bh,0}
éü
éæ
ÆæCC(Bk CD)
Bl=CD
çBy()
éæ
îCE=.4
╝CF
░CG,CH,Bz,CA,CB
,CD
¡CI,CJ,CK,CL,CM
,CN,CO,CP,CQ,CR
,CS,CT,CU,CV,CW
,CX,CY,CZ,Ca,Cb
,Cc,Cd,Ce,Cf,Cg
,Ch
«Ci,Cj,Ck,Cl,Cm
,Cn,Co,Cp,Cq,Cr
,Cs,Ct,Cu,Cv,Cw
,Cx,Cy,Cz,DA,DB
,DC,DD,DE,DF,DG
,DH,DI,DJ,DK,DL
,DM,DN,DO
,DP,DQ,DR,DS,DT
,DU,DV
äDW(╝DX,╝DY,╝CH,╝DZ,╝Da)
╝Ci
Ci=753662+(((DY*80)-(80-CH))*2)
╙(Ci,DX)
╙(Ci+1,DZ+(16*Da))
éä
äDX(░DY,╝DZ,╝CH,╝Da,╝Db)
╝Ci
üö╝(DY)â
Ci=753660+(((DZ*80)-(80-CH))*2)
åDc=1ì½(DY)ê
╙(Ci+(Dc*2),DY[Dc])
╙(Ci+(Dc*2)+1,Da+(16*Db))
éå
à
DW(DY,DZ,CH,Da,Db)
éü
éä
äDY()
¡DZ,Da
╝Ci
«Db
DU={}
åDc=DV[1][1]ìDV[2][1]+1ê
Db={}
åCH=DV[1][2]ìDV[2][2]+2ê
Ci=753662+(((Dc*80)-(80-CH))*2)
Db=▒(Db,{╥(Ci),╥(Ci+1)})
éå
DU=▒(DU,Db)
éå
BF(DV[3])
BG(DV[4])
åDc=DV[1][1]ìDV[2][1]ê
åCH=DV[1][2]ìDV[2][2]ê
üCH=DV[1][2]ÅCH=DV[2][2]â
DW(219,Dc,CH,DV[5],DV[4])
ëDc=DV[1][1]â
DW(223,Dc,CH,DV[5],DV[4])
ëDc=DV[2][1]â
DW(220,Dc,CH,DV[5],DV[4])
à
DW(32,Dc,CH,DV[3],DV[4])
éü
éå
éå
BF(8)
BG(0)
åDc=DV[1][1]+1ìDV[2][1]+1ê
DZ=Dc-(DV[1][1]-1)
Da=(DV[2][2]-(DV[1][2]-1))+1
DX(DU[DZ][Da][1]&DU[DZ][Da+1][1],Dc,
DV[2][2]+1,8,0)
éå
åCH=DV[1][2]+2ìDV[2][2]+1ê
DZ=(DV[2][1]-(DV[1][1]-1))+1
Da=CH-(DV[1][2]-1)
DW(DU[DZ][Da][1],DV[2][1]+1,CH,8,0)
éå
éä
äDZ()
¡Da,Db
åDc=DV[1][1]ìDV[2][1]+1ê
Da=Dc-(DV[1][1]-1)
åCH=DV[1][2]ìDV[2][2]+2ê
Db=CH-(DV[1][2]-1)
DW(DU[Da][Db][1],Dc,CH,DU[Da][Db][2],0)
éå
éå
éä
äDa(«Db,«Dc)
¡Dd,De,CF
üö╝(Bc(Db))â
üö╝(Bc(Dc))â
╦({
100,101,108,32}&Dc,2)
éü
De=┬(Db,{
114,98})
CF=┬(Dc,{
119,98})
è1ê
Dd=╖(De)
üDd=-1â
É
éü
¼(CF,Dd)
éè
├(De)
├(CF)
éü
éä
äDb(¡Dc,¡Dd)
BF(Dc)
BG(Dd)
éä
äDe()
Db(14,0)
╡()
DX({
32,86,101,114,115,105,111,110,32}&DL&
{
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,80,32,87,32,65,32,68,32,68,32,69,32,82,32,32,32,32,32,32,
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,77,97,
71,32,49,57,57,52,32},1,1,14,1)
Db(14,0)
éä
æDc(«Dd,«Cw)
¡Df
«Dg,Dh,Di,Dj,DA
DA={{0},{0}}
BB(8192)
DA[1]={
112,97,116,104,32,110,111,116,32,102,111,117,110,100}
Df=0
Dg={}
Dh={}
Di={}
Dj={}
Dj=▒(Dj,{
48})
»(7,1)
┤(1,{
83,101,97,114,99,104,105,110,103,32,37,115,58,32},Dd)
Dg=Bc(Dd&{
58,92})
åDk=1ì½(Dg)ê
ü╜(Dg[Dk][1],Cw)=0â
DA[1]=Dd&{
58,92}&Cw
Df=1
É
éü
üö╝(Bc(Dd&{
58,92}&Dg[Dk][1]))â
ü╜(Dg[Dk][2],{
100})=0â
»(7,11)
┤(1,{
37,115,58,92,37,115,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32,32,32},{Dd,Dg[Dk][1]})
Dh=Bc(Dd&{
58,92}&Dg[Dk][1])
åCH=1ì½(Dh)ê
ü╜(Dh[CH][1],Cw)=0â
DA[1]=Dd&{
58,92}&Dg[Dk][1]&{
92}&Cw
Df=1
É
éü
üö┐({
46},Dh[CH][1])â
üö╝(Bc(Dd&{
58,92}&Dg[Dk][1]&{
92}&
Dh[CH][1]))â
ü╜(Dh[CH][2],{
100})=0â
»(7,11)
┤(1,{
37,115,58,92,37,115,92,37,115,32,32,32,32,32,32,32,32,32,
32,32,32,32,32,32},
{Dd,Dg[Dk][1],Dh[CH][1]})
Di=Bc(Dd&{
58,92}&Dg[Dk][1]&{
92}&
Dh[CH][1])
åDl=1ì½(Di)ê
ü╜(Di[Dl][1],Cw)=0â
DA[1]=Dd&{
58,92}&Dg[Dk][1]&{
92}&
Dh[CH][1]&{
92}&Cw
Df=1
É
éü
üö┐({
46},Di[Dl][1])â
üö╝(Bc(Dd&{
58,92}&Dg[Dk][1]&{
92}&
Dh[CH][1]&{
92}&Di[Dl][1]))â
ü╜(Di[Dl][2],{
100})=0â
»(7,11)
┤(1,{
37,115,58,92,37,115,92,37,115,92,37,115,32,32,32,32,32,
32},
{Dd,Dg[Dk][1],Dh[CH][1],Di[Dl][1]})
Dj=Bc(Dd&{
58,92}&Dg[Dk][1]&{
92}&
Dh[CH][1]&{
92}&Di[Dl][1])
éü
éü
éü
üDfâ
É
éü
éå
éü
éü
éü
üDfâ
É
éü
éå
éü
éü
üDfâ
É
éü
éå
Df=1
ü╜(DA[1],{
112,97,116,104,32,110,111,116,32,102,111,117,110,100})!=0â
Db(11,0)
»(3,1)
┤(1,{
70,111,117,110,100,32,37,115,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
10,10},{DA[1]})
Db(14,0)
éü
BB(1543)
çDA[1]
éæ
äDd()
╡()
De()
Db(14,0)
DX({
67,111,117,108,100,32,110,111,116,32,102,105,110,100,32,97,32,114,101,103,
105,115,116,101,114,101,100,32,118,101,114,115,105,111,110,32,111,102,32,68,
79,79,77,46},1,4,14,0)
DX({
80,87,65,68,68,69,82,32,105,115,32,111,102,32,110,111,32,117,115,101,
32,116,111,32,121,111,117,32,105,102,32,121,111,117,32,100,111,110,39,116,
32,111,119,110,32,68,79,79,77,46},1,6,14,0)
DX({
73,102,32,121,111,117,32,109,97,100,101,32,97,32,109,105,115,116,97,107,
101,32,116,104,97,116,39,115,32,111,107,97,121,46,32,74,117,115,116,32,
115,116,97,114,116,32,80,87,65,68,68,69,82,32,97,103,97,105,110,46},1,8,14,0)
DX({
79,116,104,101,114,119,105,115,101,44,32,103,111,32,98,117,121,32,68,79,
79,77,46},1,10,14,0)
DX({
72,97,118,101,32,97,32,110,105,99,101,32,100,97,121,46},1,12,14,0)
╤(0)
éä
äDf()
¡Dg
»(3,1)
DA={{0},{0}}
DX({
66,97,100,32,111,114,32,109,105,115,115,105,110,103,32,80,87,65,68,68,
69,82,46,73,78,73,46,32,65,116,116,101,109,112,116,105,110,103,32,116,
111,32,114,101,98,117,105,108,100,46,46,46,32},3,1,14,0)
ü╝(Bc({
99,58,92,100,111,111,109}))â
Db(10,0)
¼(1,{
76,111,111,107,105,110,103,32,102,111,114,32,68,79,79,77,32,111,110,32,
100,114,105,118,101,32,67,58})
Db(14,0)
DA[1]=Dc({
67},{
68,79,79,77})
à
DA[1]={
67,58,92,68,79,79,77}
éü
ü╜(DA[1],{
112,97,116,104,32,110,111,116,32,102,111,117,110,100})=0Å╝(Bc(DA[1]&{
92,100,111,111,109,46,119,97,100}))â
åDh=3ì9ê
»(Dh,1)
¼(1,{
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32,32})
éå
»(3,1)
¼(1,{
67,111,117,108,100,32,110,111,116,32,102,105,110,100,32,97,32,114,101,103,
105,115,116,101,114,101,100,32,118,101,114,115,105,111,110,32,111,102,32,68,
79,79,77,32,111,110,32,100,114,105,118,101,32,67,58,46})
¼(1,{
10,10,73,115,32,105,116,32,111,110,32,97,110,111,116,104,101,114,
32,100,114,105,118,101,32,63,32,32,89,47,78,32})
CM=-1
èCM=-1ê
CM=╣()
éè
¼(1,{CM})
üCM=89ÅCM=121â
»(5,1)¼(1,{
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32})»(5,1)
┤(1,{
37,115},{{
87,104,105,99,104,32,100,114,105,118,101,32,108,101,116,116,101,114,32,63,
32}})
CM=-1
èCM=-1ê
CM=╣()
éè
¼(1,{CM})
üCM>90âCM=CM-32éü
ü╝(Bc(CM&{
58,92,100,111,111,109}))â
╡()
De()
Db(10,0)
»(5,1)¼(1,{
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32,32,32,32,32,32,32,32,32,32,32})»(5,1)
┤(1,{
76,111,111,107,105,110,103,32,102,111,114,32,68,79,79,77,32,111,110,32,
100,114,105,118,101,32,37,115,58},CM)
Db(14,0)
DA[1]=Dc({CM},{
68,79,79,77})
à
DA[1]=CM&{
58,92,68,79,79,77}
éü
ü╜(DA[1],{
112,97,116,104,32,110,111,116,32,102,111,117,110,100})=0Å╝(Bc(DA[1]&{
92,100,111,111,109,46,119,97,100}))â
Dd()
éü
à
Dd()
éü
à
CM=99
éü
Dg=┬({
112,119,97,100,100,101,114,46,105,110,105},{
119})
¼(Dg,{
68,79,79,77,32,80,97,116,104,32,61,32}&DA[1]&{
10})
¼(Dg,{
80,87,65,68,32,80,97,116,104,32,61,32}&DA[1]&{
92,80,87,65,68,10})
¼(Dg,{
32,32,32,32,83,107,105,108,108,32,61,32,51,10})
├(Dg)
╡()
De()
éä
äDi()
░Dj
¡Dk,Dl
╡()
De()
Db(14,0)
Dk=┬({
112,119,97,100,100,101,114,46,101,120},{
114})
üöDkâ
╡()
¼(1,{
66,97,100,32,111,114,32,109,105,115,115,105,110,103,32,80,87,65,68,68,
69,82,46,69,88})
╤(0)
éü
Dl=┬({
112,119,97,100,100,101,114,46,119,97,115},{
119})
Dj={}
è1ê
Dj=╕(Dk)
ü╝(Dj)â
É
éü
ü┐({
67,84,61,48},Dj)â
Dj={
67,84,61,49,10}
éü
ü┐({
68,68,91,49,93,61,35},Dj)â
Dj={
68,68,91,49,93,61,35,48,48,10}
éü
ü┐({
68,68,91,50,93,61,35},Dj)â
Dj={
68,68,91,50,93,61,35,48,48,10}
éü
ü┐({
68,68,91,51,93,61,35},Dj)â
Dj={
68,68,91,51,93,61,35,48,48,10}
éü
ü┐({
67,122,61,123},Dj)â
Dj=╕(Dk)
ü┐({
68,69,61,123},Dj)â
┤(Dl,{
37,115},{Dj})
éü
Dj={
67,122,61,123,10,56,53,44,55,56,44,56,50,44,54,57,44,55,49,
44,55,51,44,56,51,44,56,52,44,54,57,44,56,50,44,54,57,44,54,
56,125,10}
éü
┤(Dl,{
37,115},{Dj})
éè
├(Dk)
├(Dl)
╦({
100,101,108,32,112,119,97,100,100,101,114,46,101,120},2)
╦({
114,101,110,32,112,119,97,100,100,101,114,46,119,97,115,32,112,119,97,100,
100,101,114,46,101,120},2)
¼(1,{
10,84,104,105,115,32,99,111,112,121,32,111,102,32,80,87,65,68,68,
69,82,32,104,97,115,32,98,101,101,110,32,99,111,110,118,101,114,116,101,
100,32,116,111,32,115,104,97,114,101,119,97,114,101,46,10,10})
╤(0)
éä
äDg()
░Dh
¡Dj,Dk
╡()
De()
DX({
32,32,67,111,110,103,114,97,116,117,108,97,116,105,111,110,115,46,32,69,
105,116,104,101,114,32,121,111,117,32,99,114,97,99,107,101,100,32,116,104,
101,32,99,111,100,101,32,111,114,32,121,111,117,32,112,97,105,100,32,102,
111,114,32,116,104,105,115}&
{
32,112,114,111,103,114,97,109,46},4,1,14,0)
DX({
73,102,32,121,111,117,32,104,97,118,101,32,108,101,103,97,108,108,121,32,
114,101,103,105,115,116,101,114,101,100,44,32,116,104,97,110,107,32,121,111,
117,32,102,111,114,32,98,117,121,105,110,103,32,111,117,114,32,115,111,102,
116,119,97,114,101,46}&
{
32,73,102,32,121,111,117},5,1,14,0)
DX({
99,114,97,99,107,101,100,32,116,104,101,32,99,111,100,101,44,32,115,101,
110,100,32,117,115,32,97,32,108,101,116,116,101,114,44,32,116,101,108,108,
105,110,103,32,117,115,32,104,111,119,32,121,111,117,32,100,105,100,32,105,
116,44,32,97,108,111,110,103}&
{
32,119,105,116,104,32,116,104,101},6,1,14,0)
DX({
114,101,103,105,115,116,114,97,116,105,111,110,32,102,111,114,109,44,32,97,
110,100,32,119,101,39,108,108,32,111,102,102,105,99,105,97,108,108,121,32,
114,101,103,105,115,116,101,114,32,121,111,117,46},7,1,14,0)
CI=0
èöCIê
Cw=Cz
DX({
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32},16,27,14,0)
DX({
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32},18,1,14,0)
DX({
84,104,101,32,110,97,109,101,32,121,111,117,32,115,112,101,99,105,102,121,
32,104,101,114,101,32,105,115,32,119,104,111,32,116,104,105,115,32,99,111,
112,121,32,111,102,32,80,87,65,68,68,69,82,32,119,105,108,108,32,98,
101,32}&
{
108,101,103,97,108,108,121},12,1,11,0)
DX({
114,101,103,105,115,116,101,114,101,100,32,116,111,46,32,73,116,32,119,105,
108,108,32,97,108,115,111,32,98,101,32,100,105,115,112,108,97,121,101,100,
32,97,116,32,116,104,101,32,98,111,116,116,111,109,32}&
{
111,102,32,116,104,101,32,115,99,114,101,101,110},13,1,11,0)
DX({
111,110,32,80,87,65,68,68,69,82,39,115,32,109,97,105,110,32,109,101,
110,117,32,102,114,111,109,32,110,111,119,32,111,110,46},14,1,11,0)
DX({
80,108,101,97,115,101,32,116,121,112,101,32,105,110,32,121,111,117,114,32,
110,97,109,101,58,32},16,1,11,0)
Db(14,0)
»(16,27)
Cw=╕(0)
Cw=Cw[1..½(Cw)-1]
ü½(Cw)>40â
Cw=Cw[1..40]
éü
»(16,27)
¼(1,Cw)
¼(1,{
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32,32,32,32,32})
Db(11,0)
»(18,1)
¼(1,{
73,115,32,116,104,105,115,32,99,111,114,114,101,99,116,63,32,32,32,89,
47,78,32,32})
CM=-1
èCM=-1ê
CM=╣()
éè
üCM=89ÅCM=121â
CI=1
éü
éè
╡()
Db(14,0)
¼(1,{
82,101,103,105,115,116,101,114,105,110,103,32,121,111,117,114,32,99,111,112,
121,32,111,102,32,80,87,65,68,68,69,82,46})
Dj=┬({
112,119,97,100,100,101,114,46,101,120},{
114})
üöDjâ
╡()
¼(1,{
66,97,100,32,111,114,32,109,105,115,115,105,110,103,32,80,87,65,68,68,
69,82,46,69,88})
╤(0)
éü
Dk=┬({
112,119,97,100,100,101,114,46,119,97,115},{
119})
Dh={}
CP=1
è1ê
Dh=╕(Dj)
CP=CP+1
üö═(CP,230)â¼(1,{
46})éü
ü╝(Dh)â
É
éü
üö┐({
67,122,61,123},Dh)Äö┐({
67,84,61,49},Dh)â
┤(Dk,{
37,115},{Dh})
éü
ü┐({
67,84,61,49},Dh)â
┤(Dk,{
37,115,10},{{
67,84,61,48}})
éü
ü┐({
67,122,61,123},Dh)â
┤(Dk,{
37,115,10},{{
67,122,61,123}})
åDl=1ì½(Cw)ê
┤(Dk,{
37,100},{Cw[Dl]})
üDl<½(Cw)â
¼(Dk,{
44})
éü
éå
┤(Dk,{
37,115,10},{{
125}})
Dh=╕(Dj)
éü
éè
├(Dj)
├(Dk)
╦({
100,101,108,32,112,119,97,100,100,101,114,46,101,120},2)
╦({
114,101,110,32,112,119,97,100,100,101,114,46,119,97,115,32,112,119,97,100,
100,101,114,46,101,120},2)
Cz=Cw
CT=0
éä
äDh()
¡Dj
Dj=┬({
112,119,97,100,100,101,114,46,114,101,103},{
119})
¼(Dj,{
32,32,80,87,65,68,68,69,82,32,32,32,32,32,32,32,86,101,114,115,
105,111,110,32})
¼(Dj,DL)
¼(Dj,{
32,32,32,32,32,32,82,101,103,105,115,116,114,97,116,105,111,110,32,70,
111,114,109,32,32,32,32,32,32,83,101,114,105,97,108,32,78,117,109,98,
101,114,32})
┤(Dj,{
37,100,45,37,115,10},{CV,DM})
¼(Dj,{
10,10,32,32,82,101,103,105,115,116,114,97,116,105,111,110,32,111,
102,32,115,104,97,114,101,119,97,114,101,32,97,108,108,111,119,115})
¼(Dj,{
32,115,111,102,116,119,97,114,101,32,100,101,118,101,108,111,112,101,114,115,
32,108,105,107,101,32,77,97,71,32,83,111,102,116,119,97,114,101,32,116,
111,10,99,111,110,116,105,110,117,101,32,99,114,101,97,116,105,110,103,
32,113,117,97,108,105,116,121})
¼(Dj,{
32,115,111,102,116,119,97,114,101,44,32,97,110,100,32,97,116,32,116,104,
101,32,115,97,109,101,32,116,105,109,101,44,32,111,102,102,101,114,32,105,
116,32,116,111,32,121,111,117,10,97,116,32,97,32,114,101,97,115,111,
110,97,98,108,101})
¼(Dj,{
32,112,114,105,99,101,46,32,65,108,108,32,114,101,103,105,115,116,101,114,
101,100,32,117,115,101,114,115,32,119,105,108,108,32,114,101,99,101,105,118,
101,32,105,110,115,116,97,110,116,32,114,101,103,105,115,116,114,97,116,105,
111,110,10,111,102})
¼(Dj,{
32,80,87,65,68,68,69,82,44,32,97,110,100,32,49,32,102,117,116,117,
114,101,32,117,112,103,114,97,100,101,46,32,89,111,117,32,99,97,110,32,
97,108,115,111,32,103,101,116,32,116,104,101,32,108,97,116,101,115,116,32,
118,101,114,115,105,111,110})
¼(Dj,{
32,111,110,32,100,105,115,107,45,10,101,116,116,101,32,102,111,114,32,
97,110,32,101,120,116,114,97,32,36,49,46,48,48,46,32,73,102,32,121,
111,117,32,104,97,118,101,32,97,110,121,32,99,111,109,109,101,110,116,115,
32,111,114})
¼(Dj,{
32,112,114,111,98,108,101,109,115,32,119,105,116,104,32,80,87,65,68,68,
69,82,44,10,112,108,101,97,115,101,32,99,111,110,116,97,99,116,32,
117,115,32,97,116,32,111,117,114,32,98,117,115,105,110,101,115,115,32,97,
100,100,114,101,115,115,32,111,114})
¼(Dj,{
32,69,45,109,97,105,108,58,32,109,105,108,101,115,46,98,97,100,111,118,
105,99,107,64,112,99,111,104,105,111,46,99,111,109,10,10,83,101,
110,100,32,116,104,105,115,32,114,101,103,105,115,116,114,97,116,105,111,110,
32,102,111,114,109,32,116,111,58,10,10,9,9})
¼(Dj,{
77,97,71,32,83,111,102,116,119,97,114,101,10,9,9,49,57,50,50,
32,83,110,111,119,32,82,100,46,10,9,9,83,117,105,116,101,32,49,
48,50,10})
¼(Dj,{
9,9,80,97,114,109,97,44,32,79,72,32,32,52,52,49,51,52,10,
10,77,97,107,101,32,99,104,101,99,107,115,32,112,97,121,97,98,108,
101,32,116,111,58})
¼(Dj,{
32,32,32,71,114,101,103,111,114,121,32,74,46,32,83,116,114,105,99,107,
32,32,97,110,100,32,32,77,105,108,101,115,32,67,46,32,66,97,100,111,
118,105,99,107,10,10,77,97,71,32,119,101,108,99,111,109,101,115,
32,111,114,100,101,114,115})
¼(Dj,{
32,102,114,111,109,32,111,117,116,115,105,100,101,32,116,104,101,32,85,46,
83,46,32,70,111,114,101,105,103,110,32,99,104,101,99,107,115,32,109,117,
115,116,32,98,101,32,105,110,32,85,46,83,46,32,102,117,110,100,115,10,100,114,97,119,110,32,111,110})
¼(Dj,{
32,97,32,85,46,83,46,32,98,97,110,107,46,32,73,102,32,121,111,117,
32,99,97,110,39,116,32,103,101,116,32,97,32,99,104,101,99,107,32,100,
114,97,119,110,32,111,110,32,97,32,85,46,83,46,32,98,97,110,107,44,
32,112,108,101,97,115,101,10})
¼(Dj,{
111,98,116,97,105,110,32,97,32,34,112,111,115,116,97,108,32,109,111,
110,101,121,32,111,114,100,101,114,34,32,105,110,32,85,46,83,46,32,
102,117,110,100,115,32,102,114,111,109,32,121,111,117,114,32,108,111,99,97,
108,32,112,111,115,116})
¼(Dj,{
32,111,102,102,105,99,101,46,10,10,10,32,32,32,78,97,109,
101,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,80,114,111,100,
117,99,116})
¼(Dj,{
32,32,32,32,32,32,67,111,115,116,32,101,97,46,32,67,111,112,105,101,
115,32,32,84,111,116,97,108,10,32,32,32,32,32,32,32,32,32,32,
32,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,
45,45,45,45,45,45,45,45})
¼(Dj,{
32,32,32,32,45,45,45,45,45,45,45,32,32,32,32,32,32,45,45,45,
45,45,45,45,32,32,45,45,45,45,45,32,32,32,45,45,45,45,45,45,
45,10,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32,32,32,32,32,32,32})
¼(Dj,{
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,80,87,65,68,
68,69,82,32,32,32,32,32,32,32,49,48,46,48,48,32,32,120,32,32,
32,32,32,32,61,10,32,32,32,65,100,100,114,101,115,115,32,32,32,
32,32,32,32,32,32,32,32,32})
¼(Dj,{
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32,45,45,45,45,32,32,32,45,45,45,45,45,45,45,10,32,
32,32,32,32,32,32,32,32,32})
¼(Dj,{
32,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,
45,45,45,45,45,45,45,45,32,32,32,32,80,114,111,103,114,97,109,32,
68,105,115,107,32,32,32,49,46,48,48,32,32,120,32,32,32,32,32,32,
61,10,32,32,32,32,32,32})
¼(Dj,{
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,40,79,117,116,
115,105,100,101,32,85,46,83,46,32,32,51,46,48,48,41,32,32,32,45,
45,45,45,32,32,32})
¼(Dj,{
45,45,45,45,45,45,45,10,32,32,32,32,32,32,32,32,32,32,32,
45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,
45,45,45,45,45,45,45,10,32,32,32,32,32,32,32,32,32,32,32,
32,32,32,32,32,32,32,32,32})
¼(Dj,{
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,68,105,115,107,32,83,105,122,101,32,32,32,53,46,50,53,40,32,
41,32,32,51,46,53,40,32,41,10,32,32,32,32,32,32,32,32,32,
32,32})
¼(Dj,{
45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,
45,45,45,45,45,45,45,10,32,32,32,67,111,117,110,116,114,121,10,32,32,32,32,32,32,32,32,32,32,32})
¼(Dj,{
45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,
45,45,45,45,45,45,45,10,10,32,32,32,80,104,111,110,101,32,
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32,32,32,32,32,32,32})
¼(Dj,{
32,32,32,32,32,32,32,84,111,116,97,108,32,69,110,99,108,111,115,101,
100,32,87,105,116,104,32,79,114,100,101,114,10,32,32,32,32,32,32,
32,32,32,32,32,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,
45,45,45,45,45,45,45,45,45})
¼(Dj,{
45,45,45,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,45,45,45,
45,45,45,45,10,10})
¼(Dj,{
42,42,42,42,42,32,77,65,75,69,32,83,85,82,69,32,84,72,65,84,
32,84,72,69,32,83,69,82,73,65,76,32,78,85,77,66,69,82,32,79,
78,32,84,72,73,83,32,70,79,82,77,32,77,65,84,67,72,69,83})
¼(Dj,{
32,89,79,85,82,32,67,79,80,89,32,79,70,32,42,42,42,42,42,10})
¼(Dj,{
42,42,32,80,87,65,68,68,69,82,46,32,73,70,32,73,84,32,73,83,
32,87,82,79,78,71,44,32,84,72,69,32,82,69,71,73,83,84,82,65,
84,73,79,78,32,67,79,68,69,32,87,69,32,83,69,78,68,32,89,79,
85,32,87,73,76,76,32,78,79,84})
¼(Dj,{
32,87,79,82,75,46,42,42,10,10})
¼(Dj,{
32,32,32,69,120,112,108,97,105,110,32,98,101,108,111,119,32,119,104,101,
114,101,32,121,111,117,114,32,99,111,112,121,32,111,102,32,80,87,65,68,
68,69,82,32,99,97,109,101,32,102,114,111,109,46,32,73,102,32,66,66,
83})
¼(Dj,{
44,32,105,110,99,108,117,100,101,32,110,117,109,98,101,114,46,10,10,10,32,32,32,45,45,45,45,45,45,45,45,45,45,45,45,45,45,
45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,
45,45,45,45,45,45,45,45,45,45,45})
¼(Dj,{
45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,
45,45,45,45,45,45,45,45,45,10,10,32,32,80,108,101,97,115,
101,32,105,110,99,108,117,100,101,32,97,110,121,32,113,117,101,115,116,105,
111,110,115,32,111,114,32,99,111})
¼(Dj,{
109,109,101,110,116,115,32,105,110,32,116,104,101,32,115,112,97,99,101,32,
112,114,111,118,105,100,101,100,32,98,101,108,111,119,46,10,10,10,10,10,10,10,10,10,32,32,32,32,32,32,32,
32,32,32,32,32,32})
¼(Dj,{
32,32,32,32,32,32,32,32,32,32,32,32,83,105,103,110,97,116,117,114,
101,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32,32,32,32,32,32,32,32,32,68,97,116,101,10,32,32,32,
32,32,32,32,32,32,32,32,32,32})
¼(Dj,{
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,
45,45,45,45,45,45,45,45,45,45,32,32,32,32,32,32,45,45,45,45,
45,45,45,45,45,45,10,10})
¼(Dj,{
32,32,80,87,65,68,68,69,82,32,32,32,32,32,32,32,86,101,114,115,
105,111,110,32})
¼(Dj,DL)
¼(Dj,{
32,32,32,32,32,32,82,101,103,105,115,116,114,97,116,105,111,110,32,70,
111,114,109,32,32,32,32,32,32,83,101,114,105,97,108,32,78,117,109,98,
101,114,32})
┤(Dj,{
37,100,45,37,115},{CV,DM})
├(Dj)
éä
äDk()
░Dl
¡Dj,Dm
Ca=╢(((DK[1]*365.25)+(DK[2]*30.4375)+(DK[3]))*19)
╡()
Dj=┬({
112,119,97,100,100,101,114,46,101,120},{
114})
üöDjâ
╡()
¼(1,{
66,97,100,32,111,114,32,109,105,115,115,105,110,103,32,80,87,65,68,68,
69,82,46,69,88})
╤(0)
éü
Dm=┬({
112,119,97,100,100,101,114,46,119,97,115},{
119})
Dl={}
DD={0,0,0}
è1ê
Dl=╕(Dj)
ü╝(Dl)â
É
éü
ü½(Dl)=10â
ü┐({
68,68,91,49,93,61,35},Dl)â
ü║(2)-1â
Dl={
68,68,91,49,93,61,35}&48+║(4)
Dl=▒(Dl,47+║(5))
Dl=▒(Dl,10)
à
Dl={
68,68,91,49,93,61,35}&48+║(4)
Dl=▒(Dl,64+║(5))
Dl=▒(Dl,10)
éü
üDl[9]>57â
DD[1]=((Dl[8]-48)*16)+(Dl[9]-55)
à
DD[1]=((Dl[8]-48)*16)+(Dl[9]-48)
éü
éü
ü┐({
68,68,91,50,93,61,35},Dl)â
ü║(2)-1â
Dl={
68,68,91,50,93,61,35}&47+║(5)
Dl=▒(Dl,47+║(5))
Dl=▒(Dl,10)
à
Dl={
68,68,91,50,93,61,35}&47+║(5)
Dl=▒(Dl,64+║(5))
Dl=▒(Dl,10)
éü
üDl[9]>57â
DD[2]=((Dl[8]-48)*16)+(Dl[9]-55)
à
DD[2]=((Dl[8]-48)*16)+(Dl[9]-48)
éü
éü
ü┐({
68,68,91,51,93,61,35},Dl)â
ü║(2)-1â
Dl={
68,68,91,51,93,61,35}&47+║(5)
Dl=▒(Dl,47+║(5))
Dl=▒(Dl,10)
à
Dl={
68,68,91,51,93,61,35}&47+║(5)
Dl=▒(Dl,64+║(5))
Dl=▒(Dl,10)
éü
üDl[9]>57â
DD[3]=((Dl[8]-48)*16)+(Dl[9]-55)
à
DD[3]=((Dl[8]-48)*16)+(Dl[9]-48)
éü
éü
éü
ü┐({
67,97,61,48},Dl)â
┤(Dm,{
37,115,37,100,10},{{
67,97,61},Ca})
à
┤(Dm,{
37,115},{Dl})
éü
éè
├(Dj)
├(Dm)
╦({
100,101,108,32,112,119,97,100,100,101,114,46,101,120},2)
╦({
114,101,110,32,112,119,97,100,100,101,114,46,119,97,115,32,112,119,97,100,
100,101,114,46,101,120},2)
CV=(DD[1]*10000)+(DD[2]*100)+DD[3]
Dh()
éä
äDl()
üCV=0â
Dk()
éü
CG=(DD[1]*361)+(DD[2]*361)+(DD[3]*361)
╡()
Db(12,0)
¼(1,{
32,32,213,205,209,205,205,205,205,205,205,205,205,205,205,205,205,205,205,205,
205,205,205,205,205,205,205,209,205,184,10})
Db(10,0)
¼(1,{
218,196})
Db(12,0)
¼(1,{
179,179,179,32,32,32,32,32,32})
Db(1,0)
¼(1,{
220,219,220,32,32,32,32,220,219,220,32,32,32,32,32,32})
Db(12,0)
¼(1,{
179,179,179})
Db(10,0)
¼(1,{
196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,
196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,
196,196,196,196,196,196,196,196,191,10})
¼(1,{
179})
Db(11,0)
¼(1,{
176})
Db(12,0)
¼(1,{
179,179,179,32,32,32})
Db(1,0)
¼(1,{
220,219,219,219,219,219,219,220,220,219,219,219,219,219,219,220,32,32,32})
Db(12,0)
¼(1,{
179,179,179})
Db(11,0)
¼(1,{
176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,
176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,
176,176,176,176,176,176,176,176})
Db(10,0)
¼(1,{
179,10})
¼(1,{
179})
Db(11,0)
¼(1,{
176})
Db(12,0)
¼(1,{
179,179,179,32,32})
Db(1,0)
¼(1,{
220,219,219,219,219,219,219,219,219,219,219,219,219,219,219,219,219,220,32,32})
Db(12,0)
¼(1,{
179,179,179,32})
Db(15,0)
¼(1,{
80,87,65,68,68,69,82,32,118})
¼(1,DL)
¼(1,{
32,32,32,83,72,65,82,69,87,65,82,69,32,32,32,32,77,97,71,32,
83,111,102,116,119,97,114,101,32,49,57,57,52,32})
Db(11,0)
¼(1,{
176})
Db(10,0)
¼(1,{
179,10})
¼(1,{
179})
Db(11,0)
¼(1,{
176})
Db(12,0)
¼(1,{
179,179,179,32})
Db(1,0)
¼(1,{
220,219,219,219,219,219,223,219,219,219,219,219,219,223,219,219,219,219,219,220,
32})
Db(12,0)
¼(1,{
179,179,179})
Db(11,0)
¼(1,{
176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,
176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,
176,176,176,176,176,176,176,176})
Db(10,0)
¼(1,{
179,10})
¼(1,{
192,196})
Db(12,0)
¼(1,{
179,179,179,32})
Db(1,0)
¼(1,{
219,219,219,219,219,32,32,32,32})
¼(1,{
223,223,32,32,32,32})
Db(1,0)
¼(1,{
219,219,219,219,219,32})
Db(12,0)
¼(1,{
179,179,179})
Db(10,0)
¼(1,{
196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,
196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,
196,196,196,196,196,196,196,196,217,10})
Db(12,0)
¼(1,{
32,32,179,179,179,32})
Db(1,0)
¼(1,{
219,219,219,219,219,32,32,32})
Db(15,0)
¼(1,{
220,219,219,220,32,32,32})
Db(1,0)
¼(1,{
219,219,219,219,219,32})
Db(12,0)
¼(1,{
179,179,179,32,32,32,32,32,32,32,32,32,32})
Db(11,0)
¼(1,{
89,111,117,114,32,83,101,114,105,97,108,32,78,117,109,98,101,114,32,105,
115,32})
Db(10,0)
┤(1,{
37,100,45,37,115,10},{CV,DM})
Db(12,0)
¼(1,{
32,32,179,179,179,32})
Db(1,0)
¼(1,{
219,219,219,219,219,32,32})
Db(15,0)
¼(1,{
220,219,219,219,219,220,32,32})
Db(1,0)
¼(1,{
219,219,219,219,219,32})
Db(12,0)
¼(1,{
179,179,179,10})
¼(1,{
32,32,179,179,179,32})
Db(1,0)
¼(1,{
219,219,219,219,219,32})
Db(15,0)
¼(1,{
219,219,219,223,223,219,219,219,32})
Db(1,0)
¼(1,{
219,219,219,219,219,32})
Db(12,0)
¼(1,{
179,179,179,32,32})
Db(11,0)
¼(1,{
84,104,105,115,32,112,114,111,103,114,97,109,32,105,115,32,83,72,65,82,
69,87,65,82,69,46,32,84,114,121,32,98,101,102,111,114,101,32,121,111,
117,32,98,117,121,46,10})
Db(12,0)
¼(1,{
32,32,179,179,179,32})
Db(1,0)
¼(1,{
219,219,219,219,219,32})
Db(15,0)
¼(1,{
219,219,219,219,219,219,219,219,32})
Db(1,0)
¼(1,{
219,219,219,219,219,32})
Db(12,0)
¼(1,{
179,179,179,32,32})
Db(11,0)
¼(1,{
73,102,32,121,111,117,32,105,110,116,101,110,100,32,116,111,32,117,115,101,
32,80,87,65,68,68,69,82,32,102,111,114,32,109,111,114,101,32,116,104,
97,110,32,49,48,10})
Db(12,0)
¼(1,{
32,32,179,179,179,32})
Db(1,0)
¼(1,{
219,219,219,219,219,32})
Db(15,0)
¼(1,{
219,223,223,32,32,223,223,219,32})
Db(1,0)
¼(1,{
219,219,219,219,219,32})
Db(12,0)
¼(1,{
179,179,179,32,32})
Db(11,0)
¼(1,{
100,97,121,115,44,32,121,111,117,32,109,117,115,116,32,112,97,121,32,102,
111,114,32,105,116,46,32,73,84,32,73,83,32,78,79,84,32,70,82,69,
69,46,10})
Db(12,0)
¼(1,{
32,32,179,179,179,32})
Db(1,0)
¼(1,{
219,219,219,223,223,32})
Db(14,0)
¼(1,{
220,220,219,219,219,219,220,220,32})
Db(1,0)
¼(1,{
223,223,219,219,219,32})
Db(12,0)
¼(1,{
179,179,179,10})
¼(1,{
32,32,179,179,179,32})
Db(1,0)
¼(1,{
219,223,32})
Db(14,0)
¼(1,{
220,219,219,219,219,219,219,219,219,219,219,219,219,220,32})
Db(1,0)
¼(1,{
223,219,32})
Db(12,0)
¼(1,{
179,179,179,32,32})
Db(11,0)
¼(1,{
89,111,117,32,104,97,118,101,32,98,101,101,110,32,117,115,105,110,103,32,
80,87,65,68,68,69,82,32,102,111,114,32})
Db(26,0)
┤(1,{
37,100},╢(((DK[1]*365.25)+(DK[2]*30.4375)+DK[3])-(Ca/19)))
Db(11,0)
¼(1,{
32,100,97,121,115,46,10})
Db(12,0)
¼(1,{
32,32,179,179,179,32,32})
Db(14,0)
¼(1,{
220,219,219,219,219,219,219,223,223,223,223,219,219,219,219,219,219,220,32,32})
Db(12,0)
¼(1,{
179,179,179,10})
¼(1,{
32,32,179,179,179,32})
Db(14,0)
¼(1,{
220,219,219,219,219,219,223,32,32,32,32,32,32,223,219,219,219,219,219,220,
32})
Db(12,0)
¼(1,{
179,179,179,32,32})
Db(11,0)
¼(1,{
80,108,101,97,115,101,32,114,101,112,111,114,116,32,97,110,121,32,112,114,
111,98,108,101,109,115,32,111,114,32,115,101,110,100,32,99,111,109,109,101,
110,116,115,32,116,111,58,10})
Db(12,0)
¼(1,{
32,32,179,179,179,32})
Db(14,0)
¼(1,{
219,219,219,219,219,32,32,32,32,32,32,32,32,32,32,219,219,219,219,219,
32})
Db(12,0)
¼(1,{
179,179,179,10})
¼(1,{
32,32,179,179,179,32})
Db(14,0)
¼(1,{
219,219,219,219,219,32,32,32,32,32,32,32,32,32,32,223,223,223,223,223,
32})
Db(12,0)
¼(1,{
179,179,179,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32})
Db(13,0)
¼(1,{
77,97,71,32,83,111,102,116,119,97,114,101,10})
Db(12,0)
¼(1,{
32,32,179,179,179,32})
Db(14,0)
¼(1,{
219,219,219,219,219,32,32,32,32,32,32,32,219,219,219,219,219,219,219,219,
32})
Db(12,0)
¼(1,{
179,179,179,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32})
Db(13,0)
¼(1,{
49,57,50,50,32,83,110,111,119,32,82,100,10})
Db(12,0)
¼(1,{
32,32,179,179,179,32})
Db(14,0)
¼(1,{
223,219,219,219,219,220,32,32,32,32,32,32,219,219,219,219,219,219,219,219,
32})
Db(12,0)
¼(1,{
179,179,179,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32})
Db(13,0)
¼(1,{
83,117,105,116,101,32,35,49,48,50,10})
Db(12,0)
¼(1,{
32,32,179,179,179,32,32})
Db(14,0)
¼(1,{
219,219,219,219,219,220,220,32,32,32,32,32,220,219,219,219,219,219,219,32})
Db(12,0)
¼(1,{
179,179,179,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32})
Db(13,0)
¼(1,{
80,97,114,109,97,44,32,79,72,32,32,52,52,49,51,52,10})
Db(12,0)
¼(1,{
32,32,179,179,179,32,32,32})
Db(14,0)
¼(1,{
223,219,219,219,219,219,219,219,219,219,219,219,219,219,219,219,219,219,32})
Db(12,0)
¼(1,{
179,179,179,10})
¼(1,{
32,32,179,179,179,32,32,32,32,32,32})
Db(14,0)
¼(1,{
223,219,219,219,219,219,219,219,219,219,219,219,219,219,219,32})
Db(12,0)
¼(1,{
179,179,179,32})
Db(14,0)
¼(1,{
80,108,101,97,115,101,32,101,110,116,101,114,32,121,111,117,114,32,114,101,
103,105,115,116,114,97,116,105,111,110,32,99,111,100,101,32,110,111,119,32,
111,114,32,101,110,116,101,114,10})
Db(12,0)
¼(1,{
32,32,179,179,179,32,32,32,32,32,32,32,32,32})
Db(14,0)
¼(1,{
223,223,223,223,32,32,32,223,223,223,223,223,32})
Db(12,0)
¼(1,{
179,179,179,32})
Db(14,0)
¼(1,{
32,32,32,48,32,40,122,101,114,111,41,32,116,111,32,101,118,97,108,117,
97,116,101,32,116,104,105,115,32,112,114,111,103,114,97,109,58,32,10})
Db(12,0)
¼(1,{
32,32,212,205,207,205,205,205,205,205,205,205,205,205,205,205,205,205,205,205,
205,205,205,205,205,205,205,207,205,190})
Db(10,0)
»(23,70)
CB=CC(0)
¼(1,{
10,10})
ü╜(CB[2],CG)=0â
Dg()
éü
éä
äDj()
¡Dm
CO=║(3)
üCO=1â
Cu={{
32,73,110,32,111,114,100,101,114,32,102,111,114,32,77,97,71,32,116,111,
32,99,111,110,116,105,110,117,101,32,112,114,111,100,117,99,105,110,103,32,
113,117,97,108,105,116,121,32,115,111,102,116,119,97,114,101,44,32,119,101,
32,110,101,101,100,32,121,111,117,32,116,111,32,114,101,103,105,115,116,101,
114,46}}
éü
üCO=2â
Cu={{
32,89,111,117,32,97,114,101,32,117,115,105,110,103,32,97,110,32,85,78,
82,69,71,73,83,84,69,82,69,68,32,118,101,114,115,105,111,110,32,111,
102,32,80,87,65,68,68,69,82,46}}
éü
üCO=3â
Cu={{
32,80,108,101,97,115,101,32,99,111,110,115,105,100,101,114,32,114,101,103,
105,115,116,101,114,105,110,103,32,80,87,65,68,68,69,82,46}}
éü
Db(10,0)
Cv=╗(46,80)
Dm=1
è╜(Cv,╗(46,79))ê
üDm<80â
Cv=╗(46,79-Dm)
üDm>½(Cu[1])â
Cv=Cv&Cu[1]&╗(46,79-((79-Dm)+½(Cu[1])))
à
Cv=Cv&Cu[1][1..Dm]
éü
éü
üDm>=80â
üDm>½(Cu[1])â
Cv=Cu[1][Dm-78..½(Cu[1])]&
╗(46,78-(½(Cu[1])-(Dm-78)))
à
Cv=Cu[1][Dm-78..(Dm-78)+78]
éü
éü
DX(Cv,25,1,10,0)
Dm=Dm+1
CF=└()
è└()-CF<.1ê
éè
éè
éä
äDm()
░Dn
¡Do,Dp,Cd,Dq
«Dr,Ds
N(0)
DX({
32,65,98,111,117,116,32},3,55,14,4)
╡()
De()
Dn={0,0}
Dp=1
Dr={0}
Cd=0
ü╜(DC[Cp[3]],{
82,69,65,68,32,68,79,67})=0â
Do=┬({
112,119,97,100,100,101,114,46,100,111,99},{
114})
üöDoâ
╡()
¼(1,{
66,97,100,32,111,114,32,109,105,115,115,105,110,103,32,80,87,65,68,68,
69,82,46,68,79,67})
╤(0)
éü
à
Do=┬(DA[2]&{
92}&DC[Cp[3]]&{
46,84,88,84},{
114})
éü
èöCdê
Dq=1
èDq<21ê
Dn=╕(Do)
Ds={{},{}}
üö╝(Dn)â
åCH=1ì½(Dn)ê
üDn[CH]>31â
Ds[1]=▒(Ds[1],Dn[CH])
éü
éå
éü
ü½(Ds[1])>80Ľ(Ds[1])<=160â
Ds[2]=Ds[1][81..½(Ds[1])]
Ds[1]=Ds[1][1..80]
DX(╗(32,80),2+Dq,1,11,0)
DX(Ds[1],2+Dq,1,11,0)
Dq=Dq+1
DX(╗(32,80),2+Dq,1,11,0)
DX(Ds[2],2+Dq,1,11,0)
à
DX(╗(32,80),2+Dq,1,11,0)
DX(Ds[1],2+Dq,1,11,0)
éü
Dq=Dq+1
éè
DX(╗(32,80),23,1,14,0)
DX(╗(32,80),24,1,14,0)
»(24,1)
ü╝(Dn)â
Db(14,0)
¼(1,{
32,32,76,101,102,116,32,66,117,116,116,111,110,32,61,32,69,120,105,116})
Db(10,0)
┤(1,{
32,32,32,32,32,32,32,32,32,32,32,32,32,32,76,65,83,84,32,80,
65,71,69,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32},{Dp})
à
Db(14,0)
┤(1,{
37,115,32,76,101,102,116,32,66,117,116,116,111,110,32,37,115},{31,31})
Db(10,0)
┤(1,{
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
80,65,71,69,32,37,100,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32,32,32},{Dp})
éü
üDp>1â
Db(14,0)
»(24,61)
┤(1,{
37,115,32,82,105,103,104,116,32,66,117,116,116,111,110,32,37,115},{30,30})
à
Db(14,0)
¼(1,{
82,105,103,104,116,32,66,117,116,116,111,110,32,61,32,69,120,105,116})
éü
CO=1
èCOê
M(10)
CD=L()
ü«(CD)â
üCD[1]=Eâ
üDp>1â
CO=BR(Do,Dr[Dp-1])
Dp=Dp-1
à
Cd=1
É
éü
éü
üCD[1]=Câ
ü½(Dr)=Dpâ
Dr=▒(Dr,BS(Do))
éü
ü╝(Dn)â
Cd=1
É
éü
Dp=Dp+1
éü
CO=0
éü
éè
éè
N(1)
├(Do)
éä
äDn()
░Do
¡Dp
Dp=┬({
112,119,97,100,100,101,114,46,105,110,105},{
114})
Cj={}
Do={}
è1ê
Do=╕(Dp)
ü╝(Do)â
É
éü
Do=Do[1..½(Do)-1]
Cj=▒(Cj,Do)
¼(1,{
46})
éè
├(Dp)
ü┐({
58,92},Cj[1])â
DA={Cj[1][┐({
58,92},Cj[1])-1..½(Cj[1])]}
à
Df()
éü
ü┐({
58,92},Cj[2])â
DA=DA&{Cj[2][┐({
58,92},Cj[2])-1..½(Cj[2])]}
à
Df()
éü
åDq=1ì½(Cj[3])ê
üCj[3][Dq]<54ÄCj[3][Dq]>48â
CH=Dq
É
éü
éå
CU=Cj[3][CH]-48
üCU>5ÅCU<1â
CU=3
éü
éä
äDr()
¡Ds
Ds=┬({
112,119,97,100,100,101,114,46,105,110,105},{
119})
┤(Ds,{
68,79,79,77,32,80,97,116,104,32,61,32,37,115,10},{DA[1]})
┤(Ds,{
80,87,65,68,32,80,97,116,104,32,61,32,37,115,10},{DA[2]})
┤(Ds,{
32,32,32,32,83,107,105,108,108,32,61,32,37,100,10},CU)
├(Ds)
éä
äDo()
åDp=1ì5ê
üDB[2]=8+(Dp*2)â
CU=Dp
éü
éå
N(0)
DX({
32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32},3,2,14,0)
DX(DE[CU],3,╢((23-½(DE[CU]))/2),14,0)
CF=└()
è└()-CF<.65ê
éè
Dr()
DX({
32,83,107,105,108,108,58,32},3,2,15,0)
üCU=1âDX({
32,49},3,9,15,0)àDX({
32,49},3,9,8,0)éü
üCU=2âDX({
32,50},3,11,15,0)àDX({
32,50},3,11,8,0)éü
üCU=3âDX({
32,51},3,13,15,0)àDX({
32,51},3,13,8,0)éü
üCU=4âDX({
32,52},3,15,15,0)àDX({
32,52},3,15,8,0)éü
üCU=5âDX({
32,53,32},3,17,15,0)àDX({
32,53,32},3,17,8,0)éü
N(1)
éä
æDq()
ü«(CD)â
ç(CD[3]/8)+1&(CD[2]/8)+1
éü
ç{0,0,0}
éæ
æDs()
¡Dp,Dt,Ds,Du,Dv
DB=Dq()
Dp=DB[1]-4
üDB[2]=80â
Dt=8
à
Dt=╢(DB[2]/10)+1
éü
Ds=((Dt-1)*20)+Dp
Dv=(Dt*10)-8
Du=DB[1]
üDB[1]<5ÅDB[1]>24âDs=0éü
çDp&Dt&Ds&Du&Dv
éæ
äDp()
N(0)
BB(8192)
ü╜(Cp,Cx)!=0â
»(Cx[4],Cx[5])Db(Cr[1],Cr[2])
üCt[Cx[3]][1][1]=0âDb(8,0)éü
ü╜(DC[Cx[3]],{
82,69,65,68,32,68,79,67})=0âDb(13,0)éü
┤(1,{
37,115},{DC[Cx[3]]})
éü
»(Cp[4],Cp[5])Db(Co[1],Co[2])
┤(1,{
37,115},{DC[Cp[3]]})
üCt[Cp[3]][1][1]=0â
DX({
32,83,116,97,114,116,32,68,79,79,77,32},3,21,8,0)
DX({
32,77,117,108,116,105,112,108,97,121,101,114,32},3,34,8,0)
à
DX({
32,83,116,97,114,116,32,68,79,79,77,32},3,21,15,0)
DX({
32,77,117,108,116,105,112,108,97,121,101,114,32},3,34,15,0)
éü
üDR[Cp[3]][4]â
DX({
32,68,101,109,111,32},3,48,15,0)
à
DX({
32,68,101,109,111,32},3,48,8,0)
éü
ü╛(DC[Cp[3]],DF)Å╜(DC[Cp[3]],{
82,69,65,68,32,68,79,67})=0â
CX=1
DX({
32,65,98,111,117,116,32},3,55,15,0)
à
CX=0
DX({
32,65,98,111,117,116,32},3,55,8,0)
éü
ü╜(DC[Cp[3]],{
82,69,65,68,32,68,79,67})=0â
DX({
32,68,101,108,101,116,101,32},3,63,8,0)
à
DX({
32,68,101,108,101,116,101,32},3,63,15,0)
éü
Db(Cr[1],Cr[2])
N(1)
éä
æDt()
DS={DG[1],DG[2],DG[3],DG[4]}
Cf=DS[1]+(DS[2]*256)+(DS[3]*256*256)
+(DS[4]*256*256*256)
DT={DG[5],DG[6],DG[7],DG[8]}
Cg=DT[1]+(DT[2]*256)+(DT[3]*256*256)
+(DT[4]*256*256*256)
üCf=8âCf=0éü
üCg=8âCg=0éü
ç({Cf,Cg})
éæ
æDu()
¡Dv
Dv=0
DI={}
CZ=┬(DA[2]&{
92}&DH&{
46,119,97,100},{
114,98})
DJ=Bc(DA[2]&{
92}&DH&{
46,119,97,100})
åDw=1ì4ê
DI=▒(DI,╖(CZ))
éå
Cq={{0,0}}
DQ={{0,0},{0,0},{0,0},0}
ü╜(DI,{
80,87,65,68})=0Å╜(DI,{
73,87,65,68})=0â
CO=BR(CZ,8)
CO=CO+0
Ci={}
åDx=1ì4êCi=▒(Ci,╖(CZ))éå
Bz=Ci[1]+(Ci[2]*256)+(Ci[3]*256*256)
+(Ci[4]*256*256*256)
üDJ[1][3]>BzÄ¡(Bz)â
Cq={}
CJ=0
èöCJê
CO=BR(CZ,Bz)
DG={}
åDx=1ì16ê
DG=▒(DG,╖(CZ))
üDG[Dx]=-1âCJ=1éü
éå
ü╜(DG[9],69)=0Ä╜(DG[11],77)=0â
Cq=▒(Cq,{DG[10],DG[12]})
éü
ü╜(DG[9..12],{
68,69,77,79})=0â
DQ[4]=1
üDG[13]=49â
DQ[1]=Dt()
éü
üDG[13]=50â
DQ[2]=Dt()
éü
üDG[13]=51â
DQ[3]=Dt()
éü
éü
Bz=Bz+16
éè
éü
éü
├(CZ)
├(Dv)
ü╜(Cq,{})=0â
Cq={{0,0}}
éü
DP={Cq,DQ}
ç(DP)
éæ
äDv()
BB(8192)
»(3,1)
¼(1,{
69,120,97,109,105,110,105,110,103,32,121,111,117,114,32,87,65,68,32,102,
105,108,101,115,46})
ü╝(Bc(DA[2]&{
92,42,46,119,97,100}))â
╡()
Db(11,0)
¼(1,{
85,116,32,79,104,33,32,32,32,84,114,111,117,98,108,101,32,105,110,32,
112,97,114,97,100,105,115,101,46,10,10,10})
Db(14,0)
¼(1,{
67,111,117,108,100,32,110,111,116,32,102,105,110,100,32,97,110,121,32,80,
87,65,68,83,32,105,110,32})
Db(10,0)
¼(1,DA[2])
Db(14,0)
¼(1,{
10,10,67,104,101,99,107,32,80,87,65,68,68,69,82,46,73,78,
73,32,108,105,110,101,32,50,44,32,111,114,32,103,101,116,32,115,111,109,
101,32,80,87,65,68,83,46,10,10,10,10})
╤(0)
éü
Cm=Be(Bc(DA[2]))
DC={}
Ct={}
DR={}
DF={}
DH={}
CW=0
DI={}
åDw=1ì½(Cm)ê
ü½(Cm[Dw][1])>3â
CA=Cm[Dw][1][½(Cm[Dw][1])-3..½(Cm[Dw][1])]
DH=Cm[Dw][1][1..½(Cm[Dw][1])-4]
ü╜(CA,{
46,87,65,68})=0â
ü╜(DH,{
68,79,79,77})!=0Ä╜(DH,{
68,79,79,77,49})!=0â
DC=▒(DC,DH)
DP=Du()
Ct=▒(Ct,DP[1])
DR=▒(DR,DP[2])
CW=CW+1
üö═(CW,3)â¼(1,{
46})éü
éü
éü
ü╜(CA,{
46,84,88,84})=0â
DF=▒(DF,DH)
éü
éü
éå
üö╝(Bc({
112,119,97,100,100,101,114,46,100,111,99}))â
DC=▒(DC,{
82,69,65,68,32,68,79,67})
Ct=▒(Ct,{{0,0}})
DR=▒(DR,{{0,0},{0,0},{0,0},0})
CW=CW+1
éü
åDx=CW+1ì160êDC=▒(DC,{
32})éå
åDx=CW+1ì160êCt=▒(Ct,{{0,0}})éå
Cm={}
éä
äDw()
BB(8192)
CP=1
N(0)
åDx=1ì8ê
åDy=5ì24ê
ü═(CP,20)âCH=(╢(CP/20)*10)+2àCH=(╢(CP/21)*10)+2éü
DX({
32,32,32,32,32,32,32,32},Dy,CH,11,0)
üCP=Cp[3]â
DX(DC[CP],Dy,CH,14,4)
ë╜(DC[CP],{
82,69,65,68,32,68,79,67})=0â
DX(DC[CP],Dy,CH,13,0)
ëCt[CP][1][1]=0â
DX(DC[CP],Dy,CH,8,0)
à
DX(DC[CP],Dy,CH,11,0)
éü
CP=CP+1
éå
éå
üCTÄ║(12)-1=0â
Dj()
éü
DX({
32,196,32},25,1,3,0)
»(25,4)
Db(10,0)
¼(1,Cz)
Db(3,0)
┤(1,{
37,115,37,115},{{
32},╗(196,59-½(Cz))})
Db(10,0)
┤(1,{
32,83,47,78,32,37,100,45,37,115,32},{CV,DM})
Db(3,0)
¼(1,{
45})
Db(Cr[1],Cr[2])
Dp()
N(1)
éä
äDx()
N(0)
DX({
32,68,101,108,101,116,101,32},3,63,14,4)
Db(14,1)
N(1)
DV={{11,32},{14,53},15,1,9}
DY()
DX({
32,67,108,105,99,107,32,105,110,32,116,104,105,115,32,98,111,120,32},12,33,15,1)
DX({
32,116,111,32,99,111,110,102,105,114,109,32,100,101,108,101,116,101,32},13,33,15,1)
Db(15,0)
è1ê
M(2)
CD=L()
DB=Dq()
ü«(CD)â
üDB[1]>11ÄDB[1]<14ÄDB[2]>32ÄDB[2]<52â
N(0)
DZ()
DX({
32,68,101,108,101,116,101,32},3,64,15,0)
Cl={
100,101,108,32}&DA[2]&{
92}&DC[Cp[3]]&{
46,42}
╦(Cl,2)
Cy=DC
DC=Cy[1..Cp[3]-1]
&Cy[Cp[3]+1..½(Cy)]
&{
32}
Cy=Ct
Ct=Cy[1..Cp[3]-1]
&Cy[Cp[3]+1..½(Cy)]
&{{{0,0}}}
CW=CW-1
Dw()
É
à
N(0)
DX({
32,68,101,108,101,116,101,32},3,63,15,0)
DZ()
N(1)
Dp()
É
éü
éü
éè
éä
äDy()
N(0)
BB(8192)
De()
»(2,1)
Db(3,0)
DX(╗(196,76),2,2,3,0)
DX(╗(196,76),4,2,3,0)
DW(218,2,1,3,0)
DW(194,2,20,3,0)
DW(194,2,33,3,0)
DW(194,2,47,3,0)
DW(194,2,54,3,0)
DW(194,2,62,3,0)
DW(194,2,71,3,0)
DW(191,2,78,3,0)
DW(179,3,1,3,0)
DW(179,3,20,3,0)
DW(179,3,33,3,0)
DW(179,3,47,3,0)
DW(179,3,54,3,0)
DW(179,3,62,3,0)
DW(179,3,71,3,0)
DW(179,3,78,3,0)
DW(192,4,1,3,0)
DW(193,4,20,3,0)
DW(193,4,33,3,0)
DW(193,4,47,3,0)
DW(193,4,54,3,0)
DW(193,4,62,3,0)
DW(193,4,71,3,0)
DW(217,4,78,3,0)
DX({
83,107,105,108,108,58},3,3,15,0)
üCU=1âDX({
32,49},3,9,15,0)àDX({
32,49},3,9,8,0)éü
üCU=2âDX({
32,50},3,11,15,0)àDX({
32,50},3,11,8,0)éü
üCU=3âDX({
32,51},3,13,15,0)àDX({
32,51},3,13,8,0)éü
üCU=4âDX({
32,52},3,15,15,0)àDX({
32,52},3,15,8,0)éü
üCU=5âDX({
32,53,32},3,17,15,0)àDX({
32,53,32},3,17,8,0)éü
DX({
32,83,116,97,114,116,32,68,79,79,77,32},3,21,8,0)
DX({
32,77,117,108,116,105,112,108,97,121,101,114,32},3,34,8,0)
DX({
32,68,101,109,111,32},3,48,8,0)
DX({
32,65,98,111,117,116,32},3,55,8,0)
DX({
32,68,101,108,101,116,101,32},3,63,8,0)
DX({
32,81,117,105,116,32},3,72,15,0)
Dw()
éä
äDz()
N(0)
BB(8192)
DX({
32,83,116,97,114,116,32,68,79,79,77,32},3,21,8,0)
DX({
32,65,98,111,117,116,32},3,55,8,0)
DX({
32,68,101,108,101,116,101,32},3,63,8,0)
DX({
67,97,110,99,101,108},3,72,15,0)
Db(9,1)
DV={{8,21},{19,59},15,1,9}
DY()
»(10,22)
Db(15,1)
┤(1,{
32,84,104,101,114,101,32,105,115,32,97,32,115,97,118,101,100,32,103,97,
109,101,32,102,111,114,32,37,115,46},{DC[Cp[3]]})
DX({
32,68,111,32,121,111,117,32,119,97,110,116,32,105,116,32,116,111,32,108,
111,97,100,32,97,116,32,115,116,97,114,116,117,112,63,32},12,22,15,1)
DX({
32,32,32,32,32,32,32,32,218,196,196,196,196,196,191,32,32,32,32,32,
32,32,218,196,196,196,196,191},14,22,15,1)
DX({
32,32,32,32,32,32,32,32,179,32},15,22,15,1)
DX({
89,69,83},15,32,14,1)
DX({
179,32,32,32,32,32,32,32,179},15,36,15,1)
DX({
78,79},15,46,14,1)
DX({
32,179},15,48,15,1)
DX({
32,32,32,32,32,32,32,32,192,196,196,196,196,196,217,32,32,32,32,32,
32,32,192,196,196,196,196,217},16,22,15,1)
CY=0
N(1)
èöCYê
M(10)
CD=L()
DB=Dq()
ü«(CD)â
üDB[1]=3â
üDB[2]>9ÄDB[2]<19â
üDB[2]=10ÅDB[2]=12ÅDB[2]=14
ÅDB[2]=16ÅDB[2]=18â
Do()
éü
ëDB[2]>71ÄDB[2]<78â
N(0)
DX({
67,97,110,99,101,108},3,73,14,4)
DZ()
DX({
32,81,117,105,116,32},3,73,15,0)
CS=2
É
éü
éü
üDB[1]=15â
üDB[2]>30ÄDB[2]<36â
Cb=1
CY=1
É
éü
éü
üDB[1]=15â
üDB[2]>44ÄDB[2]<49â
Cb=0
CY=1
É
éü
éü
éü
éè
éä
äEA()
Ch=1
N(0)
BB(8192)
DX({
32,83,116,97,114,116,32,68,79,79,77,32},3,21,8,0)
DX({
32,65,98,111,117,116,32},3,55,8,0)
DX({
32,68,101,108,101,116,101,32},3,63,8,0)
DX({
67,97,110,99,101,108},3,72,15,0)
DV={{7,3},{22,77},15,1,9}
DY()
DX({
75,110,101,101,32,68,101,101,112,32,105,110,32,116,104,101,32,68,101,97,
100},8,6,11,1)
DW(179,8,28,14,1)
DX({
79,110,32,116,104,101,32,83,104,111,114,101,115,32,111,102,32,72,101,108,
108},8,30,11,1)
DW(179,8,52,14,1)
DX({
73,110,102,101,114,110,111},8,54,11,1)
DX(╗(196,23)&179&╗(196,23)&179&╗(196,23),9,5,14,1)
åEB=10ì18ê
ü╛({49,EB+39},Ct[Cp[3]])â
DX(Cs[1][EB-9],EB,5,15,1)
à
DX(Cs[1][EB-9],EB,5,8,1)
éü
DW(179,EB,28,14,1)
ü╛({50,EB+39},Ct[Cp[3]])â
DX(Cs[2][EB-9],EB,29,15,1)
à
DX(Cs[2][EB-9],EB,29,8,1)
éü
DW(179,EB,52,14,1)
ü╛({51,EB+39},Ct[Cp[3]])â
DX(Cs[3][EB-9],EB,53,15,1)
à
DX(Cs[3][EB-9],EB,53,8,1)
éü
éå
DX(╗(196,71),19,5,14,1)
Db(14,1)
»(20,5)┤(1,{
32,37,115},{DC[Cp[3]]})
Db(15,1)
¼(1,{
32,105,115,32,97,32,109,117,108,116,105,45,108,101,118,101,108,32,80,87,
65,68,46,32,69,105,116,104,101,114,32,99,104,111,111,115,101,32,97,32,
108,101,118,101,108,32,116,111,32,115,116,97,114,116,32,111,110,44,32,111,
114,32})
DX({
99,108,105,99,107,32,116,104,101,32,114,105,103,104,116,32,109,111,117,115,
101,32,98,117,116,116,111,110,32,116,111,32,115,116,97,114,116,32,68,79,
79,77,32,119,105,116,104,111,117,116,32,119,97,114,112,105,110,103,46},21,15,15,1)
CK=1
CN=1
CY=0
N(1)
èöCYê
M(10)
CD=L()
DB=Dq()
ü«(CD)â
üDB[1]=3â
üDB[2]>9ÄDB[2]<19â
üDB[2]=10ÅDB[2]=12ÅDB[2]=14
ÅDB[2]=16ÅDB[2]=18â
Do()
éü
ëDB[2]>71ÄDB[2]<78â
N(0)
DX({
67,97,110,99,101,108},3,73,14,4)
DZ()
DX({
32,81,117,105,116,32},3,73,15,0)
CS=1
N(1)
É
éü
éü
üDB[2]>4ÄDB[2]<28â
üDB[1]>9ÄDB[1]<19â
CK=1
CN=DB[1]-9
ü╛({CK+48,CN+48},Ct[Cp[3]])â
CY=1
éü
éü
éü
üDB[2]>28ÄDB[2]<52â
üDB[1]>9ÄDB[1]<19â
CK=2
CN=DB[1]-9
ü╛({CK+48,CN+48},Ct[Cp[3]])â
CY=1
éü
éü
éü
üDB[2]>52ÄDB[2]<76â
üDB[1]>9ÄDB[1]<19â
CK=3
CN=DB[1]-9
ü╛({CK+48,CN+48},Ct[Cp[3]])â
CY=1
éü
éü
éü
üCD[1]=Eâ
CN=0
CK=0
CY=1
éü
éü
éè
éä
äEB()
¡EC,ED
Db(14,0)
╡()
┤(1,{
82,101,99,111,114,100,105,110,103,32,115,97,118,101,100,32,103,97,109,101,
32,102,111,114,32,37,115},{DC[Cp[3]]})
üö╝(Bc(DA[2]&{
92}&DC[Cp[3]]&{
46,68,83,71}))â
╦({
100,101,108,32}&DA[2]&{
92}&DC[Cp[3]]&{
46,68,83,71},2)
¼(1,{
46})
éü
Da({
68,79,79,77,83,65,86,53,46,68,83,71},DA[2]&{
92}&DC[Cp[3]]&{
46,87,65,83})
¼(1,{
46})
EC=┬(DA[2]&{
92}&DC[Cp[3]]&{
46,87,65,83},{
114,98})
ED=┬(DA[2]&{
92}&DC[Cp[3]]&{
46,68,83,71},{
119,98})
åEE=1ì24ê
CO=╖(EC)
éå
¼(1,{
46})
┤(ED,{
37,115,32,45,32,80,87,65,68,68,69,82,32,83,65,86,69},{DC[Cp[3]]})
åEE=1ì24-(15+½(DC[Cp[3]]))ê
¼(ED,0)
éå
¼(1,{
46})
è1ê
CO=╖(EC)
üCO=-1â
É
éü
¼(ED,CO)
ü║(9119)=1â¼(1,{
46})éü
éè
¼(1,{
46})
├(EC)
├(ED)
¼(1,{
46})
╦({
100,101,108,32}&DA[2]&{
92}&DC[Cp[3]]&{
46,87,65,83},2)
¼(1,{
46})
éä
äEC()
¡ED
Cb=0
Cc=1
Cc=Cc-1
üö╝(Bc({
100,111,111,109,115,97,118,53,46,100,115,103}))â
üö╝(Bc({
100,111,111,109,115,97,118,53,46,119,97,115}))â
╦({
100,101,108,32,100,111,111,109,115,97,118,53,46,100,115,103},2)
╦({
114,101,110,32,100,111,111,109,115,97,118,53,46,119,97,115,32,100,111,111,
109,115,97,118,53,46,100,115,103},2)
éü
╦({
114,101,110,32,100,111,111,109,115,97,118,53,46,100,115,103,32,100,111,111,
109,115,97,118,53,46,119,97,115},2)
Cc=0
à
Cc=1
éü
ED=┬({
100,111,111,109,115,97,118,53,46,100,115,103},{
119})
┤(ED,{
37,115,32,45,32,80,87,65,68,68,69,82,32,83,65,86,69},{DC[Cp[3]]})
åEE=1ì24-(15+½(DC[Cp[3]]))ê
¼(ED,0)
éå
¼(ED,{
10})
├(ED)
üö╝(Bc(DA[2]&{
92}&DC[Cp[3]]&{
46,68,83,71}))â
üöCN=0ÄöCK=0â
Dz()
éü
üöCSâ
N(0)
Db(14,0)
╡()
┤(1,{
84,114,97,110,115,102,101,114,105,110,103,32,115,97,118,101,100,32,103,97,
109,101,32,100,97,116,97,32,102,111,114,32,37,115,46,46},{DC[Cp[3]]})
╦({
100,101,108,32,100,111,111,109,115,97,118,53,46,100,115,103},2)
¼(1,{
46})
Da(DA[2]&{
92}&DC[Cp[3]]&{
46,68,83,71},{
68,79,79,77,83,65,86,53,46,68,83,71})
¼(1,{
46})
¼(1,{
46})
¼(1,{
46})
à
╦({
100,101,108,32,100,111,111,109,115,97,118,53,46,100,115,103},2)
éü
éü
üCSÄö╝(Bc({
100,111,111,109,115,97,118,53,46,119,97,115}))â
╦({
114,101,110,32,100,111,111,109,115,97,118,53,46,119,97,115,32,100,111,111,
109,115,97,118,53,46,100,115,103},2)
éü
éä
äED()
DN=Bc({
100,111,111,109,115,97,118,53,46,100,115,103})
DO={{0,0,0}}
üö╝(Bc(DA[2]&{
92}&DC[Cp[3]]&{
46,68,83,71}))â
DO=Bc(DA[2]&{
92}&DC[Cp[3]]&{
46,68,83,71})
ü╜(DO[1][3],DN[1][3])!=0â
EB()
éü
à
üDN[1][3]>26â
EB()
éü
éü
╦({
100,101,108,32,100,111,111,109,115,97,118,53,46,100,115,103},2)
üö╝(Bc({
100,111,111,109,115,97,118,53,46,119,97,115}))â
»(24,1)
╦({
114,101,110,32,100,111,111,109,115,97,118,53,46,119,97,115,32,100,111,111,
109,115,97,118,53,46,100,115,103},2)
éü
éä
äEE()
CL=0
Ch=0
ü½(Ct[Cp[3]])>1â
EA()
à
CK=Ct[Cp[3]][1][1]-48
CN=Ct[Cp[3]][1][2]-48
éü
üöCSâ
EC()
éü
N(0)
DX({
32,83,116,97,114,116,32,68,79,79,77,32},3,21,14,4)
Db(14,0)
N(1)
üöCSâ
N(0)
╡()
DX({
83,116,97,114,116,105,110,103,32,68,79,79,77,46,46,46},1,1,14,0)
DX({
69,120,116,101,114,110,97,108,32,80,97,116,99,104,32,87,65,68,58,32},3,1,14,0)
»(3,21)
Db(11,0)
┤(1,{
37,115,46,87,65,68,10,10},{DC[Cp[3]]})
DX({
32,32,32,32,32,32,32,32,32,32,32,77,105,115,115,105,111,110,58,32},5,1,14,0)
Db(11,0)
üCK=0âDX({
82,69,67,73,69,86,69,32,79,82,68,69,82,83,32,65,84,32,68,82,
79,80,32,80,79,73,78,84},5,21,11,0)éü
üCK=1âDX({
75,110,101,101,32,68,101,101,112,32,105,110,32,116,104,101,32,68,101,97,
100},5,21,11,0)éü
üCK=2âDX({
84,104,101,32,83,104,111,114,101,115,32,111,102,32,72,32,69,32,68,111,
117,98,108,101,32,84,111,111,116,104,112,105,99,107,115},5,21,11,0)éü
üCK=3âDX({
73,110,102,101,114,110,111},5,21,11,0)éü
DX({
32,32,32,32,32,32,32,32,32,32,32,84,104,101,97,116,101,114,58},7,1,14,0)
üCN=0â
DX({
32,67,76,65,83,83,73,70,73,69,68},7,21,11,0)
à
DX(Cs[CK][CN],7,20,11,0)
éü
DX({
32,32,32,32,32,32,32,83,107,105,108,108,32,76,101,118,101,108,58,32},9,1,14,0)
DX(DE[CU],9,21,11,0)
DX({
32,32,32,32,32,32,32,32,83,97,118,101,100,32,71,97,109,101,58,32},11,1,14,0)
ü╝(Bc(DA[2]&{
92}&DC[Cp[3]]&{
46,68,83,71}))â
DX({
78,111},11,21,11,0)
à
üCbâ
DX({
76,111,97,100,32,97,116,32,115,116,97,114,116,117,112},11,21,11,0)
à
DX({
89,101,115,44,32,100,111,110,39,116,32,108,111,97,100,32,97,116,32,115,
116,97,114,116,117,112},11,21,11,0)
éü
éü
üCN=0ÄCK=0â
Cn={
100,111,111,109,32,45,102,105,108,101,32}&DA[2]&{
92}&DC[Cp[3]]&{
46,87,65,68}
ëöCbâ
Cn={
100,111,111,109,32,45,102,105,108,101,32}&DA[2]&{
92}&DC[Cp[3]]&{
46,87,65,68,32,45,115,107,105,108,108,32}
&CU+48&{
32,45,100,101,118,112,97,114,109,32,45,119,97,114,112,32}&CK+48&{
32}&CN+48
à
Cn={
100,111,111,109,32,45,102,105,108,101,32}&DA[2]&{
92}&DC[Cp[3]]
&{
46,119,97,100,32,45,100,101,118,112,97,114,109,32,45,108,111,97,100,103,
97,109,101,32,53}
éü
╦(Cn,2)
ED()
Dy()
éü
CN=1
CK=1
DB={5,1}
N(1)
üCS=2ÄCh=1â
Dy()
éü
CS=0
Ch=0
éä
äEF(¡Ce)
¡EG,EH
Db(14,0)
╡()
¼(1,{
69,120,116,114,97,99,116,105,110,103,32,100,101,109,111,46,46,46})
EG=┬(DA[2]&{
92}&DC[Cp[3]]&{
46,87,65,68},{
114,98})
EH=┬({
100,101,109,111,46,108,109,112},{
119,98})
CO=BR(EG,DR[Cp[3]][Ce][1])
CF=└()
åEI=1ìDR[Cp[3]][Ce][2]ê
¼(EH,╖(EG))
üö═(EI,9192)â¼(1,{
46})éü
éå
├(EG)
├(EH)
éä
äEG()
N(0)
DX({
32,83,116,97,114,116,32,68,79,79,77,32},3,21,8,0)
DX({
32,68,101,109,111,32},3,48,14,4)
DX({
32,65,98,111,117,116,32},3,55,8,0)
DX({
32,68,101,108,101,116,101,32},3,63,8,0)
DX({
67,97,110,99,101,108},3,72,15,0)
N(1)
DV={{11,31},{15,45},15,1,9}
DY()
üDR[Cp[3]][1][1]â
DX({
80,108,97,121,32,68,101,109,111,32,49},12,33,15,1)
à
DX({
80,108,97,121,32,68,101,109,111,32,49},12,33,8,1)
éü
üDR[Cp[3]][2][1]â
DX({
80,108,97,121,32,68,101,109,111,32,50},13,33,15,1)
à
DX({
80,108,97,121,32,68,101,109,111,32,50},13,33,8,1)
éü
üDR[Cp[3]][3][1]â
DX({
80,108,97,121,32,68,101,109,111,32,51},14,33,15,1)
à
DX({
80,108,97,121,32,68,101,109,111,32,51},14,33,8,1)
éü
Cd=0
CY=0
èöCdê
M(2)
CD=L()
DB=Dq()
ü«(CD)â
üDB[1]=3ÄDB[2]>72ÄDB[2]<78â
N(0)
DX({
32,68,101,109,111,32},3,48,15,0)
DX({
67,97,110,99,101,108},3,72,14,4)
Cd=1
CS=1
DZ()
DX({
32,81,117,105,116,32},3,72,15,0)
N(1)
Dp()
É
éü
üDB[2]>31ÄDB[2]<45â
üDB[1]>11ÄDB[1]<15â
N(0)
üDB[1]=12ÄDR[Cp[3]][1][1]â
DX({
32,80,108,97,121,32,68,101,109,111,32,49,32},12,32,14,4)
Ce=1
EF(Ce)
Cd=1
¼(1,{
46})
éü
üDB[1]=13ÄDR[Cp[3]][2][1]â
DX({
32,80,108,97,121,32,68,101,109,111,32,50,32},13,32,14,4)
Ce=2
EF(Ce)
Cd=1
¼(1,{
46})
éü
üDB[1]=14ÄDR[Cp[3]][3][1]â
DX({
32,80,108,97,121,32,68,101,109,111,32,51,32},14,32,14,4)
Ce=3
EF(Ce)
Cd=1
¼(1,{
46})
éü
N(1)
éü
éü
éü
éè
üöCSâ
N(0)
╦({
100,111,111,109,32,45,102,105,108,101,32}&DA[2]&{
92}&DC[Cp[3]]&{
46,87,65,68,32,45,112,108,97,121,100,101,109,111,32,100,101,109,111},2)
╦({
100,101,108,32,100,101,109,111,46,108,109,112},2)
N(1)
Dy()
éü
CS=0
éä
äEH()
N(0)
DX({
32,83,116,97,114,116,32,68,79,79,77,32},3,21,8,0)
DX({
32,77,117,108,116,105,112,108,97,121,101,114,32},3,34,14,4)
DX({
32,68,101,109,111,32},3,48,8,0)
DX({
32,65,98,111,117,116,32},3,55,8,0)
DX({
32,68,101,108,101,116,101,32},3,63,8,0)
DX({
67,97,110,99,101,108},3,72,15,0)
N(1)
DV={{10,28},{14,52},15,1,9}
DY()
DX({
32,84,104,105,115,32,102,101,97,116,117,114,101,32,119,105,108,108,32,98,
101},11,29,15,1)
DX({
32,32,32,32,32,97,118,97,105,108,97,98,108,101,32,105,110},12,29,15,1)
DX({
32,32,32,116,104,101,32,110,101,120,116,32,118,101,114,115,105,111,110},13,29,15,1)
Cd=0
CY=0
èöCdê
M(2)
CD=L()
DB=Dq()
ü«(CD)â
üDB[1]=3ÄDB[2]>72ÄDB[2]<78â
N(0)
DX({
32,68,101,109,111,32},3,48,15,0)
DX({
67,97,110,99,101,108},3,72,14,4)
Cd=1
CS=1
DZ()
DX({
32,81,117,105,116,32},3,72,15,0)
N(1)
Dp()
É
éü
éü
éè
CS=0
éä
üo(3)â
üo(2)â
üo(7)â
¼(1,{
67,97,110,39,116,32,115,101,116,32,103,114,97,112,104,105,99,115,32,97,
100,97,112,116,111,114,32,116,111,32,56,48,120,50,53,32,116,101,120,116,
32,109,111,100,101,46})
╤(0)
éü
éü
éü
Ca=0
DK=╠()
DD={0,0,0}
DD[1]=#00
DD[2]=#00
DD[3]=#00
CV=(DD[1]*10000)+(DD[2]*100)+DD[3]
CS=0 CQ=0 CK=1 CN=1
Cp={5,1,1,5,2}Cx=Cp DB={5,1}CD={2,16,32}
Co={14,4}Cr={11,0}DC={}Ck=┴()
DM={
83,67}
DL={
49,46,48}
CT=1
Cz={
85,78,82,69,71,73,83,84,69,82,69,68}
DE={{
84,111,111,32,89,111,117,110,103,32,84,111,32,68,105,101},{
72,101,121,32,78,111,116,32,84,111,111,32,82,111,117,103,104}
,{
72,117,114,116,32,77,101,32,80,108,101,110,116,121},{
85,108,116,114,97,32,86,105,111,108,101,110,99,101}
,{
78,32,73,32,71,32,72,32,84,32,77,32,65,32,82,32,69}}
Cs={{{
32,72,97,110,103,97,114,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32},{
32,78,117,99,108,101,97,114,32,80,108,97,110,116,32,32,32,32,32,32,
32,32,32},
{
32,84,111,120,105,110,32,82,101,102,105,110,101,114,121,32,32,32,32,32,
32,32,32},{
32,67,111,109,109,97,110,100,32,67,111,110,116,114,111,108,32,32,32,32,
32,32,32},
{
32,80,104,111,98,111,115,32,76,97,98,32,32,32,32,32,32,32,32,32,
32,32,32},{
32,67,101,110,116,114,97,108,32,80,114,111,99,101,115,115,105,110,103,32,
32,32,32},
{
32,67,111,109,112,117,116,101,114,32,83,116,97,116,105,111,110,32,32,32,
32,32,32},{
32,80,104,111,98,111,115,32,65,110,111,109,97,108,121,32,32,32,32,32,
32,32,32},
{
32,77,105,108,105,116,97,114,121,32,66,97,115,101,32,32,32,32,32,32,
32,32,32}}
,{{
32,68,101,105,109,111,115,32,65,110,111,109,97,108,121,32,32,32,32,32,
32,32,32},{
32,67,111,110,116,97,105,110,109,101,110,116,32,65,114,101,97,32,32,32,
32,32,32},
{
32,82,101,102,105,110,101,114,121,32,32,32,32,32,32,32,32,32,32,32,
32,32,32},{
32,68,101,105,109,111,115,32,76,97,98,32,32,32,32,32,32,32,32,32,
32,32,32},
{
32,67,111,109,109,97,110,100,32,67,101,110,116,101,114,32,32,32,32,32,
32,32,32},{
32,72,97,108,108,115,32,111,102,32,116,104,101,32,68,97,109,110,101,100,
32,32,32},
{
32,83,112,97,119,110,105,110,103,32,86,97,116,115,32,32,32,32,32,32,
32,32,32},{
32,84,111,119,101,114,32,111,102,32,66,97,98,101,108,32,32,32,32,32,
32,32,32},
{
32,70,111,114,116,114,101,115,115,32,111,102,32,77,121,115,116,101,114,121,
32,32,32}}
,{{
32,72,101,108,108,32,75,101,101,112,32,32,32,32,32,32,32,32,32,32,
32,32,32},{
32,83,108,111,117,103,104,32,111,102,32,68,105,115,112,97,105,114,32,32,
32,32,32},
{
32,80,97,110,100,101,109,111,110,105,117,109,32,32,32,32,32,32,32,32,
32,32,32},{
32,72,111,117,115,101,32,111,102,32,80,97,105,110,32,32,32,32,32,32,
32,32,32},
{
32,85,110,104,111,108,121,32,67,97,116,104,101,100,114,97,108,32,32,32,
32,32,32},{
32,77,116,46,69,114,101,98,117,115,32,32,32,32,32,32,32,32,32,32,
32,32,32},
{
32,76,105,109,98,111,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32},{
32,68,73,83,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32},
{
32,87,97,114,114,101,110,115,32,32,32,32,32,32,32,32,32,32,32,32,
32,32,32}}}
BD(1)
CR=┬({
80,82,78},{
117})
CR=CR+0
CF=└()
ü½(Ck)=2â
Ck=▒(Ck,{
32})
éü
ü╜(Ck[3],{
115,119})=0Å╜(Ck[3],{
83,87})=0â
Di()
éü
üCTâ
Dl()
éü
ü╝(Bc({
112,119,97,100,100,101,114,46,114,101,103}))â
Dh()
éü
De()
»(3,1)
¼(1,{
82,101,97,100,105,110,103,32,80,87,65,68,68,69,82,46,73,78,73,46})
ü╝(Bc({
112,119,97,100,100,101,114,46,105,110,105}))â
Df()
╡()
De()
»(3,1)
éü
Dn()
ü╝(Bc(DA[1]&{
92,68,79,79,77,46,87,65,68}))â
Dd()
éü
Dv()
èöCSê
CL=0
Dy()
èöCLê
M(2)
CD=L()
DB=Dq()
ü«(CD)â
üCQâ
»(25,1)
┤(1,{
37,50,100,32,32,37,50,100,32,32,37,51,100,32,32,37,51,100,32,32,
37,49,100}
,{DB[1],DB[2],CD[2],CD[3],CD[1]})
éü
üCD[1]=Câ
üDB[1]>4ÄDB[1]<25â
üDB[2]>1ÄDB[2]<78â
Cx=Cp
Cp=Ds()
üCp[3]<=CWâ
ü└()-CF<=CEâ
üCt[Cp[3]][1][1]â
ü╜(Cx,Cp)=0â
EE()
N(1)
éü
éü
éü
Dp()
à
Cp=Cx
éü
CF=└()
éü
éü
üDB[1]=3â
üDB[2]>9ÄDB[2]<19â
üDB[2]=10ÅDB[2]=12ÅDB[2]=14
ÅDB[2]=16ÅDB[2]=18â
Do()
éü
ëDB[2]>71ÄDB[2]<78â
N(0)
DX({
32,81,117,105,116,32},3,72,14,4)
CL=1
CS=1
»(25,1)
Db(14,0)
¼(1,╗(32,79))
»(25,1)
ëDB[2]>20ÄDB[2]<33â
üCt[Cp[3]][1][1]â
EE()
N(1)
éü
ëDB[2]>33ÄDB[2]<47â
üCt[Cp[3]][1][1]â
EH()
N(1)
éü
ëDB[2]>62ÄDB[2]<71â
ü╜(DC[Cp[3]],{
82,69,65,68,32,68,79,67})!=0â
Dx()
N(1)
éü
ëDB[2]>47ÄDB[2]<54ÄDR[Cp[3]][4]â
EG()
N(1)
ëDB[2]>54ÄDB[2]<62ÄCXâ
Dm()
Dy()
N(1)
éü
éü
éü
éü
éè
BB(1543)
éè